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Ihe Effect of the Surface op the
Magnetic 2:9#9;&&2&.21 ap Elgctron Gas
by
Harvey Brooks and F. S. Ham

Harvard “‘University

Cambridge, Massachusetts

I.

introduction

A number of papersl'13 have been published in the last
twenty years concerning the determination of the megnetiec sus-
ceptibility of a system of free electrons or rnf ele-irons
confined to a box, and a variety of elegant methods have been
applied. It has not been altogether clear, however, to what
extent the walls of the system could be neglected in some of
these calculations, and the dependence of the susceptibility on
the form of the wall potential has not been adequately investi-
gated, 8ince in fact the walls play an essential role, a deri-
vation which explicitly considered them seemed desirable. The
authors believe that the present treatment offers = clear picture
of the physical situation, some worth-while criticisms of results
obtained by other methods, and a few useful modifications of the
mathematical methods previcusly used,

It 1s well known14’15 that in classical physics the positive
moment contributed by electrons that collide with the walls of
the system exactly cancels the negative moment of electrons far
from the walls. Van Vleck’ and Teller® showed that a similar
balancing occurs in quantum mechanics (with a non-zero resultant)




TR169 -2~

and gave arguments to justify the value for the magnetic suscepti-
bility obtained by Landau9 from the f{ree energy. BHowever, Teller's
argument was for an infinite plane wall, and Van Vleck's required
the use of the 0ld qmantum mechanics, and it is not clear to what
extent’ either justifies the more recent calculaticns by Landau1
and others of the oscillatory De Haas-Van Alphan terms. We shall
first give an improved argument for a cylindrical bBox which makes
clear this balancing of diamagnetic and paramagnetic states and
determines with the WKB approximation the nature of the boundary
states. We shall then give a more detailed derivation needed to
establish corrections to the terms in the susceptibility that
dominate at high field strengths. This will show that the usual
treatmentsl give the De Haas-Van Alphen terms correctly for'
"gtrong- fields" and that the only important correction to the
L.andau steady diamagnetism is a term of the form of the "surface
diamagnetism” recently reported by Osborne7 and Steele§ Unfor-
tunately, the magnitude and sign of both this surface correction
and the susceptibility of intermediate and small systems obtained
by Dingle's metzhod-”"4 depend rather sensitively on the assumptions
made about the fcrm of the wall potential. This result throws

some doubt on the accuracy of the WKB method in such calculations.
The following derivation is valid only if the radius R of the con-
fining box is considerably larger than the classical orbit radius
Rc = é%‘VEEEbf an electron moving in a plane perpendicular to the
magnetic field with energy equal to the Fermi energy & of the
system--the "strong field" case. Finally we shall give heretofore
unpublished results for the model proposed by Darwinlo to show

some fundamental differences from the usual electron-in-a-box model.

II.

Methods of Calculating the Magnetic Moment

[ Y. Y T %o Aa ..M _..N A an. - : L
4118 uUuSUuds pruccuurlre 1IasS veen LW o calculdave vae aggnevie

moment M from the Helmholtz free energy F by the formula
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M=o <§§>,,,,,,_ (2.1)

It 1s, however, evident that if the electrons are independent ex-
cept in so far as they obey the exclusion principle when Fermi
statistics are used, then the moment of the system should also

be given by the sum of the moments of the individual electron
states weighted with the probability that the state is occupied.5’7
Thus with Fermi statistics we should have

¢, (H) |
" ‘Z(#) m(ei(ﬁ)-;va‘ ’ (2.2)

where % 1s determined by the condition

N =
Z e (2.3)
l4e

N being the total number of electrons in the system, and the sum
being taken over all single electron states. On the other hand,
the free energy is given by

(&=, (H)) /KT
P=NC - kT E ¢nl1+e £1 1, (2.4)
i

and since by (2.3) %é = 0, (2.1) and (2.2) give the same result
provided the 1imits of summation in (2.4) and the degeneracy of
states with a common energy (if we should use the index i1 to label
a collection of states with the same energy instead of a single
state) do not depend on H.

However, for a system confined by a cylindrical box of cross
section A with its axis parallel to the uniform magnetic field,

the energies of states unperturbed by the walls are16
2,2
_BkZuln ‘l'!\f\ﬂ - = =~ 1~
Enk = cm \cn+iy ’ n Ugdgo,e0ae0
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where B = %g; s k is the component of the propagation vector
along the axis, and the dezeneracy of each such (n,k ) level 1is
to first approximation3’ gg%’ neglecting spin degeneracy.

As remarked by Van Vleck’ and Osborne,7 if we use only these
energy states (2.5) and this degeneracy in (2.2), we find a
large negative total moment of magnitude greater than N8, whereas |
(2.4)and (2.1) yleld the usual Landau result(for(pH<<§)), ‘

2 2 2 2 |
n.-i:g_x(ngv,l/sa.-n%gn.-nﬁ%u, (2.6) i

plus the periodic De Haas-Van Alphen terms. Here n(t) is the 5
density of states (including spin degeneracy) in the energy

scale at the Fermi levelt, and the second expression shows (2.6)
to be much less in magnitude than NB. Our first problem is, then,
to show that the difference between these methods is removed when
we include the positive moments of the boundary states in our
summation (2.2).

III.

Ihe Boundary States in the WKB Approximatiop

We consider the Schrodinger equation satisfied by the wave
function of a single electron state in a cylindrical box of
length L and radius R with its axis parallel to the uniform
magnetic field, in which we neglect all interaction between
eléctrons:

5, @ ¥ , e%M2, 2, 2. _
n-[az2+—%a¢2 T v-teE 5 + SEGP Ry By (D)

for r < R, and the boundary condition ¥(R) = 0. On separating in ‘

cylindrical coordinates, we put
2,2
Ak
e =E-—2fm7'-sas
ikzz isg
v=e e f(r), (3.2)

s =0, 1, #2,.00. ,
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and get as the equation for f(r)
2 2.2 . 2..2.2 ‘
- % -g-;(r 3%)1’(1') + [-’-;? + g_aé.z_] £(r) =e'f(r). (3.3)
me

We now make the substitution r = ex, £(r) = g(x), which puts (3.3)
in a form suitable for the WKB approximations

2 2.2 2n2
Q_xézl + 2% (e'e=X- 55%- -'9—33 e**lg(x) = 0. (3.4)
dx h 8mc

This determines €' in terms of s and n through the phase integral
condition (after transformation back to r)

222 222“2'
f2 [2m<e ‘- ﬁznl 2 - e8 2 >t|*dr = (n + *)ﬁ "’ (305)
- r mc< .

where r, and r, are the two positive zeros of the quantity under
the square root, provided thar r, < R. This condition yields

e' = (2n + |s| + 1) BH, (3.6)

and the erergies are given by (2.5). Tf, however, r;, <R <r,,
then the upper limit of integration is R, and it is evident that
for given n and s, €' will be increased over the value (3.6).17
We note that the quantum numbers n, s, and k, and the spin orien-
tation completely specify a single state, which according to the

exclusion principle can be occupied by no more than one electron.

The integral in (3.5) with R as the upper limit can be
evaluated exactly,l8 but the result is a complicated implicit
equation for e¢' which can be solved only with great difficulty.
Fortunately, when s is large, the effective radial "potential®”
in (3.3),

2.2 2,22
v(r) =485 + e AL (3.7)
2mr 8me

has a sharp minimum at

-/ ﬁ 'Ril‘.
1.0 =V e

~~
(A
[ ]
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and to excellent accuracy may be approximated by the first terms
of a power series,

v(r) = pH|s| + Q-EL (r-r, )2, (3.9)

Higher terms in the series may be neglected for energies of the
order of ; provided R>> R, the condition mentioned in the
introduction. Yor the present we consider only states with non-
positive values of s, so that we have from (3.2), (3.5), and
(3.9), using ¢ = ¢! - BH|s| = E - (5% )/20

f2 b
2
[Zm e - Ln-)(r-r % dr = (n + A m. (3.10)
r 2mc
. & 1
Setting € = (2n+1)BH, we find that the range of r for which the
quantity under the square root is positive is

Ar = 2r % 1?1%1 y (3.11)

so that the wave functions of the vast majority of occupied states
are highly localized radially at a distance T, from the axis of
the box, provided only that

2
o, - B .12

the number of states with common spin orientation and common n and
kz and T <€ R, 1s very much greater than ;/ZBHN n+$#. This is in
particular true for boundary states, for which R. The quan-

tity Ar in (3.11) is actually the diameter %% V2me of the orbit of
a classical electron with "transverse energy" €.

We determine € as a function of (ro-R) by solving (3.10) with
R replacing r, as the upper 1imit of integration. On defining

y=& , x=G RE, (3.13)

we are led to the system of equations

— i~
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x a (2n+1)g(2)
= - = z
f z° cos iz - z(lizz) ¢ ’

N (3.14)
4

-—1138-11—35*—; = (2nt1)¥2(2)

¥ (cos'lz-z(l-z2) ) LI . S

where z is a parameter with the range -1 < z £ 1. These have been
solved numerically for n = 0,1,2, and the results are plotted in
Fig. 1.

The moment of a sta.. of given n and s is given by
} o€ o€ - dr
- - |G) (G | oo
s r
o

For"bulk states" far from the wall, we have from (3.10), as usual,

€
n,s
by’ (3.14) it is readily seen that the first term in (3.15) is

negligible compared with the second. The moment is therefore posi-

tive, since (3 /3r )y > 0 and from (3.8)

dr_
w47 Aot (3.16)

Together with (3.13) and (3.14), this ylelds for boundary states

+1)? $(q1.,2y%
Emz_l_ng_'_s_l_:(zni) (2"'f|j°L) (1-2°) ’(3.17)
B vz °X ° cos~Lz(cos~Lz-2z(1-z2)1) 2

which is plotted in Fig. II for n = 0,1,2. We note thet the
moment of a single boundary state is proportional to the square
root of the degeneracy lslo given in (3.12). As we shall see from
(4.2), (3.11), and (3.8), the number of occupied states is propor-
tional t» the same quantity, so that the total moment contributed
by boundary electrons is proportional to Isl°°

= (2n+1)BHand M = -(2n+1) B, but for boundary states given




Iv.

Approximate Calculation of the Total Moment

We consider first the system discussed by Peierls,ll with N
electrons in a "two-dimensional®" system with common value
o: kz and common spin orientation, at the absolute zero of temper-
ature. For very strong magnetic fields the degeneracy 9&% = Islo
of the n = 0 level 1s larger than N, so that all electrons are
in the lowest bulk state, and the moment of the system is -NB. As
H is lowered, the r, of each state increases by (3.8) until some
occupied states are fcrced up into the "tail" of Pig. I. We shall
calculate the moment of this tall at the field strength at which
the uppermost filled state in the tail is just level with the
n = 1 Bbulk states, so that for a further decrease in H electrons
must "overflow" from the n = 0 tail to n = 1 bulk states, if the
system is to remain in thermal equilibrium. Then from (3.15),

neglecting (gﬁ)ro, we have

dr
_ o€ ) —9
utail = f droP(ro) <’ <‘5‘1‘. dH)’ (4.1)
filled tail e

where p(ro) is the density of n = 0 states in terms of the parameter

To and, since n and s completely specify a state, is given from

(3.8) by
= (2¢H _lsh#
p(r,) = (2el_lsht, (4.2)
Prom this and (3.16), together with the observation that for a
large system the spread in |[s| of the states in the occupied part

of the tail is negligible compared with the value of [slo itself,
we see that we can take Islo from under the integral, getting

|s| a Is| top
—_— € - -0 .
My 49 = H dr (37705 = H [ejbottgm
I 4

299 .3 A. 28N o N\
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FIG. I ENERGY OF THE BOUNDARY STATES. A
THE QUANTITIES x AND y ARE |
DEFINED IN (3.13) |
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FIG. I MOMENT OF THE BOUNCARY STATES
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Since the filled part of the tail stretches between the unper-
turbed bulk states n = 0,1, we have finally

I sl
= —0 "
M40 = —F- BH = 2FB. (4.4)

Hence on adding to this the moment of all the n = 0 bulk states,
whose number 1is not appreciably diminished from N by the loss of
a few states to the tail, we see that the total moment is Nj ,

as given by Peierls. Continuing this argument as the higher bulk
levels fill up, we find the same oscillation between -NB and N8
found by Peierls. We note, however, that the change from -NB

to NB 1s very rapid but not discontinuous and in fact occurs

over a range AH/H'~!2/VT§T6.

It is now a simple matter to consider finite temperature and
to Justify (2.1) and (2.4) from {2.2). The moment contributed by
the bulk states is as usual (for given spin orientation)

1
M N Pt

=0 (2n+1)BH*'—§5z 4
(4.5)

whereas the moment contributed by electrons in the tails is
Mig11s = - f dk, dr P(r >((§— ) .
tail n
L

722
14e [S(n, O’H)+ m 'g]/kT
(4.6)
Again using (3.16) and (4.2), taking Isl out of the integral on

assuming its spread negligible over the part of the tail for which
n2k2 is appreciable, and using (3.12), we have
[ 2% e

1“5 (4




o

- ————

ni69 =10~

. (¢ 0]
~XKIsel 2
Mio11s = 2nhe dk, ar, 3r,
@

n=o
122
6[Ln(i«[§-8(n’r°’m- -—afl/kr] (4.7)

On -carrying out the integration over the tails, which extend from
the energies of the unperturbed n levels to infinity, we get

(%, -(2n+1)BH E%j]/kr
'éaiis - gﬁ%& S j dk, en(u. ‘ ) .(4,8)
' (4 o)

Combining this with (4.5) we see that we have for the total

moment
" = ( (¢ -(2n+1)BH ﬁl/ﬂ);«x 9)
-9 - - 2 .
g |- B S [t e
n=o = O

where we treat g as a constant parameter in the differentiation.
This is exactly the formula obtained from (2.1) and (2.4) when we
form F using only the energies of the bulk states and the degen-
eracy (3.12), provided we use (2.3) to eliminate terms involving
g%w,,and neglect states of positive s. Hence to the extent that

s has negligible spread over the occupied portions of the tails,
the usual formula (2,1) is valid despite the field-dependent
degeneracy. We now recognize the vital role played by the boundary
states in cancelling a large part of the bulk diamagnetism, and we
can no longer suppose such calculations applicable to electrons
that are completely free.

Had we used Boltzmani. statistics instead of Fermi statistics,
the arguments would have gone through similarly, and, in fact, if
we change our parameter of integration in the expression analogous
to (4.7) from r, to s, we get essentially the boundary term in
equation (68) of Van Vleck's derivation°5

e i i S




v.

Correction Ierms in the Iotal Moment

| Instead of trying to refine the above argument directly in
order to obtain correction terms when the spread in s is appreci-
able, we now turn to a more elegant derivation which is more
easily handled but which shows the nature of the balancing of
bulk diamagnetism and surface paramagnetism less clearly than

the above. We.consider the system of Section III with the
cylindrically symmetric radial potential generalized to an arbi-
trary V(r) so that in the Schrodinger equation (3.1l) E¥ is re-
placed by (B-V(r))¢. The separation of variables used in (3.2)
is still valid, and we now define r, by (3.8). Temporarily we
restrict attention to non-positive values of s and require that
the "transverse energy" parameter € = E - (ﬁ2k5/23) vary suffi-
cientlyslowly as a function of |s| to allow us to'reblace sums over
Ial occurring in expressipns for the moment and free energy by
integrals over B|. This is equivalent to the requirement that
our fields be strong, that is, that R>> Rc. We require also that
the length L of the cylinder parallel to the field be long enough
so that sums over the allowed values of kz may be replaced by
integrals over kz with the density L/2n., W¥We have then for the
total moment of electrons with a common spin orientation19

>~

IQ- L dk i jp d|s| (?g) A ‘
13 Bn
Zp ® ? n=o Jvo sl " -8)/kT

(e+ 2m
l4e

(5.1)

Integrating by parts in [s|, noticing that contributions from the
1limits of integration vanish, taking the derivative with respect
to H (regarding t as a constant parameter) from under the inte-

gral signs on the reasonable assumption that 8%/31163 = 3% /0s0H,
and finally changing our parameter of integration from |s| to T
by (3.8), we have

11~

1

—
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i %2

&- e(n H)- ——&/kT

9 2 4 1709 am

u= - Saias Ghe | Ok, i ; To 9% 31, fnf1te °
' - @ n=o0 J9

L (5.2)

The bracketed quantity 1s, of course, the quantity (F-NB) (still
neglecting states with s positive) We may also derive (5.2) from
(5.1) by first changing our parameter of integration to r,, using
(3.15), and then performing the necessary integration by parts.

We shall now consider the evaluation of (F-N§) in the form appear-

ing in (5.2). |
“ %
We first set E =e + —5%, change from k, to E as a parameter

of integration, and -integrate by parts in E, obtaining

®  &(p,H,E) /ae(nHr) |
S’ f 2 26 o,

n=o ©
(5.3)

where £ 1s the Fermi function —-—h—gm and 5(n,H,E) 1s that
value of r, for which e = E. We may replace 5(n,H,E)
by o if we consider (B=€ )Y to be identically zero whenever ¢>E, as

we shall do henceforth.

L eB2mt [ F
F-NG = o pen2 fEEQ %=
0

We now specialize V(r) to be constant over our system except
for a rapid rise at the wall., Then only for states in the tail will
€ .depend on P and we may replace zero in (5.3) as the lower limit
of integration over r, by (R=A To ), the value of r  at which the

th -tail starts to rise.2° 21 The tail rises rapidly in energy
so that rg differs only slightly from R2 for occupied states in
the tail, and we may advantageously use the expansion

r2 = B2+ 2R(r -B) + (r -R)Z. (5.4)

When we use the first term, 32, in (5.3), the integral over r_ is
immediately and exac'ly integrable. The only contribution comes
from the lower limit of integration, where the energy levels are
those of the free elsctron, (2n+l)BH. This is the value for the
free energy derived by Landau,l Sondheimer and Wilson,2 and D:lngle.3
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~ We see that the evaluation of this term in the expansion is ex-

act, independentiy of any approximations that must be made in
determining € in the energy tail.

The evaluation of the contribution to F of the second and
third terms in (5.4) will depend on our approximations in deter-
mining e¢. In the following work we shall assume the V(r) of
Section III, an infinite potential jump at the wall, and use the
approximate results of (3.13). and (3.14). From these equations
we see that to the accuracy of our use of the WKB method and
the approximate p;tential (3.9), the nth tai%‘starts up at
ar =( Eﬁ(znu)) ', that (r_-R) -(eg(anu)) £(z), and that
e-= (2n*1)pH g(2). Hence it is convenient to change our vari-

able of integration in (5.3) from r, to z, which together with
(5.4) gives us

af 2, A~
F-nyg =& 28 (25)*]; ;> B ZI az Baﬁ(a;ﬁ(nﬂ))*f(z)
a ° . =0 v-1 “

(5.5)
. g (n+})(f(z))2} 2pH(n+) 9&{&) (g-28H(n+d)g(2z))?.

We shall now consider separately each of the three terms, which
ve call (P-Ng)  ~ RZ, (F-Nt), VR, and (P-N5),~ 1, and in each
we shall reverse the order of integration over z and summation
over n. We see that we have to consider sums of the form

- i (n+3)*(B-2H (n+)g(z))Y , (5.6)

n=o

P
T
b 4!

e

where, as already remarked, we consider the second factor identi-

cally zero when 28H(n+4)g(z) > E. We now use the Poisson sum
formula3

™ s ]

E f(n+) E (-1)F rGZﬂinr f(n)dn, (5.7)

= - —
st W a4 =T W - v

],.v‘

.
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according to which (5.6) equals

@ . ;
(-1 g7 f e2™MEM. X (1 u)Yqu, (5.8)

r==® 0

wh?re we have put E 'E_BRETZT and u = n/g

We must now examine the function

ny(v) -f eV% y*(1-u)Y du, (5;9)
o

in which we may expand the exponential in its Taylor series and
use the beta-function formula,

f o (1-wPan = ClEllLies) (5.10)
o

to obtain the expansion

= 3 +s+ +
Vo (V) = Z %% : (5.11)

S$=0

Comparing this with the expansion22 of the confluent hypergeometric
function (z), we find that
K nlz)s

iv
ny(v) = (iv)'&'"m 92 W Hk,m(iv),

(9.12)

>~

#here k = (y-x)/2, and m = (x+y+1)/2. A useful property is that
av__(v)

_%— =1 vx+1§y(v) . (5013)

The asymptotic expansion of ny(v) for v > 0 is derived from that
23
of z)s
ul(,xn( )

.

A i e £
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i?(y*l)

ny(v) ~ |"‘(y+1)eiv (v)-(y*l)(lw(%))

N
+M(x+1) 0 (x+1) )‘("*1’ (e od)). (5.14)

The expansion for v < 0 is obtained from this by replacing v by
1ts absolute value and taking the complex conjugate of the
formula, since from (5.9), ny(-lvl) = V;y(lvl).

Hence (5.8) becomes

®
Z (-1)F gx 7+l (a—a'g%'(;r)xﬂ ny(gﬂij-) . (5.15)

To evaluato (P-N5),, we use the usual procedure on (5.3) in
order to avoid any appearance of making an approximation, replace
rg by 32, integrate over r., and then use the Poisson sum. The
result is

. 2 ar =
(r-n5) = F (5)3/2? 2 d& B2 E ’ D7 ¥, 3 G- (5.16)

0 r=-00

The r = 0 term is evaluated using (5.9) and (5.10). The others
may be changed in the conventional fashionl’ with the formula

2v2 4v

rogor =4 - B v s e g Gan

The series in (5.16) from the first term in (5.17) vanishes if we
pair off terms with r = #lrl. In the series from the second term
in (5.17) we use the formula

@O

r
E 111-)2— = --'{—22- , (5.18)
r=

ar
(P-NE), %;,(23)3/2]J 2 B2 @

so that

e e ——- . Wi

]
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sn2 ‘ af ‘
- 5-34;(1?)3/2(;53)2 ]: > et (5.19)

' E
. LR? 3/2,..2 [ °f =5 (T %
.‘gﬁ (23) (BH) Za‘“‘*ﬂ z : 1,‘2‘2“ S X

I'==®

where the prime on the sum indicates omission of the r = 0 term.
So far this is exact. The conventional rosultl’2 is obtained
from the asymptotic formula (5.14) (for r > 0)

. , =
v-i;o (?ﬁs)_"’ (g)' K : (5.20)

Higher terms in (5.14) lead to corrections to the steady and
oscillatory terms of (5.19) which contribute negligibly to the
corresponding terms of the magnetic moment provided BH/§<<1.

In ~evaluating (F-l§)1 and (l"-lg)2 in (5.5) with the use
of (5.15), we see that the r = 0 term in the sum can be inte-
grated exactly, for V__(0) is independent of z. This term Vvan-
ishes in (P-N(),, but not in (F-NE),. On setting z = siné for
convenience and obtaining g(z) and £(z) from (3.13) and (3.14),
we have finally

of
o)

(5.21)
W , w/2
’ E (-1)T [ cos®e sin & de 73 l(gg—g{%m’),
r=-m n/2 252
Y = l2myd 1 oo g7/2
(F-N9), = 1o8m(53) (o) 2 EAEE B
® (5.22)

ar ® ' /r(/2
*"La'('ag)*_]": ? '—937/2dE ; (-1)T s1n20c0s20d0 »
2 1T (A< J, OE = Lo
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We now seek the contributiocn to F of states with positive
values of s, whose unperturbed energies are found from (3.2) and
(3.6) to be (ﬁzk )/2m +(2(nts)+1)pH. If R> 2R, states per-
turbed appreciably by the wall have energies above the Fermi
level, so that we may calculate the contribution to F with com-
plete neglect of the walls )

£ic2
: v SR (E=(2(n+s)+1) SH——EZ)M
(P-NE), = -kT 2%, f dk, E E {nl| 14¢ )
- ® n=o0 *

s= | |
m ' (5.23)

ﬁ(ﬂg* f o g nm-(nog)amﬁ/?

n=o

9

On setting n=n* - %, we can use the Poisson sum (5.7), and
after some rearr. sent using (5.17) we obtain

af 7/2 5/2
(F-N5), --'I;-(fﬁz)ifsin {%lo B2 - Tom m}dx
(o)
+ Lo2myt 1)T
2 f rif (- o )2 163(—§§)

3/2
;ﬂ%—— Yoy (ﬁﬁ)}. (5.24)

- We may now proceed most simply by using a proof given by
Osborno7 that for an electron gas in a potential field of cylin-
drical symmetry the volume in quantum number space bounded by a
surface of constant energy and the plane n = - § is independent

of the field strength, at least to the accuracy of the WKB approxi-
mation,24 and that eonsequently if we replace sums over quantum
numbers by the appropriate integrals the resulting approximation

to the free energy is independent of H. In the present discus-
sion we have already integrated over k, and replaced jgf; in (5.1)

or (5.2) hy Ae | and in the Poieson sum rormuln the » - 0

- weaaw o

s

@
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term arises when g f(n+}) 1is replaced bij f(n+})dn. We

have moreover determined our energy eigenvalues th the
method. Consequently if in (5.23) we replace ‘/‘Bx:s
in order to make the s integration cover the range ( ®, o),
we should expect that the sum of all the r = O terms should be

independent of H. This term in (F-Nb) o is indeed field-independent,

and this term in (r-xg)l vanishes. The term arising from the men-
tioned modification of (9.23) is the first term in the first
integral in (5.24); which combines with the r = 0 term in (F-NE),,
the first in (5.22). The sum of these two is not zero, but we
recall further that we introduced an approximation in using (3.9)
"for the effective potential and found accordingly that € was a
function of (ro-R) only. The exact WKB calculation yields a
series of the form

g (r -R)

e=e(r -R) *—59—+.,.,. (5.25)

Using only the first term of \this series introduced no error in
(F-Né)o, but use of the second term of (5.25) in (F-Nf;)1 ylelds
terms of the form of (F-H§)2. The » = 0 term of this correction
does in fact cancel the r = 0 terms of (F-N%), and (P-N§),. The
derivation of the second term in (5.25) 1is outlined in Appendix B
for. the purpose of obtaining important corrections to (F-Ni;)?_.
Osborne's theorem spares us further calculations on higher terms:
we see that no r = 0 term will contribute to the magnetic moment.

Actually we obtained (5.24) from (5.23) by direct use of the
Poisson sum without changing to an integral over s, and conse-
quently we obtained the second term in the first integral in
(5.24). This is got rid of when we note that for consistency we
shoyld have used the Poisson sum in (5.1) instead of replacing

i:f(s) by f(s) ds. This leads to replacing the sum by
/;

4

® f £(s)ds, and the extraf  ds f(s) turns out
-

to be just what is needed to cancel the second term in (5.24).
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*he contribution to the magnetic moment of (F - N, and
(F - Nf, are immediately obtained by straightforward differentia-
tion with respect to explicit dependence on H, with use of (5.13).

Prom the asymptotic expansion (5.14) we find that the dominant steady

and oscillatory terms are

ar_
ﬂ-z- (2‘)3/2 s(aa)f 3-§—°- gt aE

+ ;n;; (21)3/2 a(gn)* —5! EA4E i‘-ﬁh sin (ﬁ‘ z), (5.26)
g [ o S

r=]l

of
- 24 (fi)* o[ =% He . (5.27)
o

To obtain the contributions of (F - N&), and (F - NE), we must
use steepest descent procedures to evaluate the integrals. This is
done in Appendix A; the dominant terms of the result are

R e ELEDIC e B

. " (5/6)(5/3)%(5/3) (1 -—%73-)
LQE—I7§. 28 3v3 3 2/3 _ 2 .
' (BH) (n?-)(") (3) 1on P(7/3)

f%éﬂ E*3 @, (528
(o)

N+ N =-_L_m§_.L7_ g2 5:1_})_- al E _q

- L (2ayEE)2 ".';‘5’3)‘-1"2%7'.,’) Pty n &,

2 3E B
(BH)4/3 ‘h 81 ﬁ- r‘(17/6) jo (50 29)
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where 5 (5/3) 1s the Riemann zeta-function. The steady term of
(5.29) has been corrected to include the contribution to M, of
the second term in (5.25), the derivation of which is sketched

in Appendix B. The coefficient of the oscillatory term of (5.29)

is uncorrected, for this term is too small to be of any real
interest. The steady term of M, alvne is 3/2 times the steady
term of (5.29).

To contrast the magnitude of the various contributions to
the moment, we have constructed Table I, in which we record the
form of the dominant steady term and that of the amplitude of
the dominant oscillatory term of M , M,, M * M, , and M, at
the absolute zero of temperature, where 3f /3E = -5 (E-E). The
correct numerical coefficients ara given only for the steady
terms in M, M,, and M,+ M, . We also 2ive the condition on
the radius B of the cylinder and the field strength (R = -5 VZmB)
such that the steady terms in ll, l2+ '13’ and M are very much
smaller than the steady term of lo, the ordinary Landau diamag-
netism. The condition given for the oscillatory terms is that
required to make them small compared to the lo oscillations.
Since the validity of our analysis is. as previously remarked,
restricted to. "strong" fields, R>>R , we see that the only
significant corrections25 to lo are the steady term o
the so-called "surface diamagnetism" found by Osborne
Steele,a and the smaller steady term of M,+ M, . The numerical
coefficient and temperature behavior of both are given in (5.28)
and (5.29) if the integrals are evaluated. Of course, we have
given only the dominant terms in the expansion of M asymptotic
in (§/BH). Therefore for exceedingly high fields such that
this quantity is of order unity (it can never be much less than
unity except for very high “emperatures), the value of M will

M,
7’2& and

- —— e 4 et i S

N

be considerably changed. We should remark that all of our results
are for a system of electrons with common spin orientation. They
should be multiplied by two for a real electron gas if we continue
to disregard the magnetiigmoment of the spin. This may be included
by the method of Dingle. We may thus conclude that the ordinary




)

Tadble I

Dominant Steady Term Dominant Oscillatory Term
- 2,2my3/2 ; 2,2m\3/2 :
M, | -(.02652)8%(23/2 pepmita IR°(3) “pipmt g
~(.02293)1R () —Eyrm 4/3 R() —Ls 3/
;% (3m)1/3° 2 (m72
N
R >> (3%)1/3 R, R>>Rc
2m\ % /6 L(Zm)% 2
e »(.004173)1,(112) Com) 373 7 (BH)372"§
R>>(T?H-)l/6 R, R>>R,
+ L(2B)} pgd L&t By 2
1 x (pE)3 2
u+
a>>(ﬁgﬂ)’}ac R>>R,

. .
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Landau type of calculation using the free energy and neglecting the
boundary states yields the correct value of the moment provided
R>>(EA H)l/BRc, snd we see that the "surface diamagnetism"™ correc-
tions may be obtained in a straightforward manner as well as with
the elegant number theory methods of Osborne and Steele.

VI,
Corrections for ¥Wall Ihlckness

Ye now seek the effect on the moment of the system of replacing
the potential used for detailed calculations in Sections III, IV,
and V, an infinite jump at radius R, by a potential that gives the
wall region seen by the electrons a finite thickness. We assume
the potential

V(r) = a(r - R)? for r > R
= 0 for r <R

(6.1)

and in order to simplify our work require that when a(r1 - 8)2 ='§
the "thickness" of the wall, (r; - R), shall be very much less than
the orbit radius R,. This leads to the requirement

; 242
a»u:? : (6.2)
2me

In metals the wall region is probably of the order of 10'8

so that the requirement (6.2) is reasonable,

We must now include the potential (6.1) in the phase integral
(3.10):

R

2me

2,:2 F2 2,;2
f (om(e- & (r-r )21t ar +f tom(e- &5 (ror )2-a(r-R)2) 1% ar
r R 2me

1l
= (n + %) . (6.3)

Changing variables with (3.13) and setting u = (r_ - R)c%%)f .

to 1077 cm,
and R, 1s of order 10~3 or 10™* for fields of several thousand gauss,

U S
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_an®
v = 53 » and noticing that because of (6.2) y>>1, we obtain on
2mp™H integrating and keeping only the largest of the terms
involving v
y = 2t T ). S I  (6.a)
cos™1z-z(1-z )* 2 r*(cos z-z(1l-z )i)

& (u i | |
i 1 - (6.5)
* (cos™'z-z(1-2%)T) { ay¥(cos™1z- z(l-za)?} ’ ’

where as usual y = ‘- to order 1/7* and -1 € z< 1,
z

We now recall that our evaluation of (F - Ng)o in Section V did
not depend on the particular shape of the energy curve plotted against
Tyy SO that a potential of the present sort in no way changes the
previously obtained value of (F - N&)o or lo. The only corrections
come in through (F - N§), and (F - Kf),. We shall consider only the
former, the larger one. We must then use (6.4) and (6.5) in the
integral (B4) of Appendix B. We use the same device outlined there
to put the integral in standard form and use the methods of Appendix
A, with 4(0) = cos3e s to evaluate it. The r = 0 term does not
vanish but is independent of H, as we expect from Osborne's theorem.
The oscillatory part of this correction to the moment is entirely
negligible for the conditions we have assumed. In addition to the
usual steady "surface diamagnetism" correction (5.28), however, we
have the diamagnetic steady contribution

)1 3pd)gd) (1-T17 32 1/ af '
12 yr 1)
(6.6)

This turns out to be small compared to the usual "surface dia-
magnetism" (5.28) only if

53 i B 2/? 9232
w4 >0 Eﬁ 5

ulw
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This is a stronger condition than (6.2), but one that is satisfied .
in practice with a factor of 103 or.so to spare, using the estimates
for R, and wall thickness cited above. Hence 'lw is negligible .
compared to llo We may infer that this conclusion is true for any
other form of wall potential confined to an appropriately thin
layer.

The above considerations make it appear that the susceptibility
18 at least for "strong" fields relatively independent of the details
of the wall potential. This is true for M, since the calculation
of this term was exact, but it is not true for M, for the following
reason. In applying the WKB phase integral (3.5) to determine the
energy eigenvalues we should, as remarked in a footnote,17 replace
(n+}) by (n+3/4) when we assume an infinite potentlial wall (or
equivalently the boundary condition ¥(R) = 0)and when the upper limit
of integration in (3.5) is R. Such a replacement is dictated by
WEKB theory in the requirement that the phase of the approximate wave
function in the classically allowed region between the turning points
be such that the wave function vanishes at the turning point instead
of connecting to a damped exponential in the classically forbidden

region beyond the turning point, the more usual condition°27 Similarly, !

1f both turning points occur at infinite walls, we must use (n+l)

in (3.5) withn = 0, 1, 2, ... as usual. This latter form of (3.5)
in fact yields the correct eigenvalues for a one-dimensional electron
in the potential V(x) = O for |x|<a, V(x) = oofor |x|>a. The
(n+3/4) form of (3.5) yields the exact eigenvalues for a similar
problem with V(x) = oo for x<0, V(x) = 10:2 for x>0. Consequently
if we assume an infinite potential jump at the surface of the con-
tainer in the present problem, we must use (n+3/4) in (3.5) when

the upper turning point is at R.

At first sight one would not expect this change to make much
difference, since n is quite large for most of our levels. However,
it turns out that the change drastically alters the Poisson sum
formila (5.7) and in this fashion alters the surface correction terms
‘1 and '2 in such a way as to produce a "surface paramagnetism"

~— s

© ——
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instead of the ®"surface diamagnetism" found earlier. The para-~
magnetic result agrees.with Dingle's calculations;4 in fact our
result for M, and M, using (n+3/4) agrees numerically with the
terms of corresponding form and magnitude in Dingle's result
(when ours are multiplied by 2 to include spin degeneracy). This
is as it should be, for although Dingle begins his derivation by
considering the location of the zeros . of the approximate WKB
wave functions, his fundamental equations are more easily derived
by using (3.5) with (n+3/4) to determine the number of eigenstates
of given s and kz with energles below any given E, the turning
point for such s, k,, and E being at R.

. The modified form of the Poisson sum formula is derived in
Appendix C. If 0<a <1,

. .
£(n+a) = é , e’a"im‘[ £(n)e2"inryy, (6.8).
n=o0 rs==- Q0 '

Using this in place of (5.7), we find we must replace the (-1)T in
the sums of (5.21) and (5.22) by e~ "ITe  calculation of the
resulting numerical coefficients for ll and H2 * “13 for a number

of values of a between 1/2 and 3/4 yields Table II, in which the
coefficients replace the bracketed numerical coefficients of Table I.

Hence the magnitude and sign of the surface corrections depend
critically on the choice of a. The same 1s true for the value of

the susceptibility at weak fields, R<<R_, calculated by Dingle.*

Iable II

a Coefficiept Il Coefficient ggfllg_
.75 ~ ' + ,00763 - ,00139
» 70 - ,00047 + ,00009
.65 - .00770 + .00140
.60 - .01378 + ,00251
1] - 01806 + .00345
.50 - ,02293 + ,004173

e -

e ————
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As may be seen from his derivation the coefficient of this term
depends on the form of the Poisson sum exactly as do the coeffi-
cients of Table II and would yield a paramagnetism roughly three
times the magnitude of the reported diamagnetism if a = 1/2 were
used. All this seems contrary to what our physical intuition
would lead us to expect, and we should be Jjustified in maintain-
ing a healthy skepticism toward the accuracy, or even the reality,
of surface corrections and weak field terms calculated in this
fashion from the WKB approximation. Such skepticism is especi-
ally justified if we consider the present work to be an accurate
approximation to the state of affairs in an actual metal, where
the surface is rot sharp.

However, if we assume the reality of the surface correction
and weak field susceptibility and the accuracy of the WKB method
in calculating them when we assume a general wall potential more
closely approximating the wall potential seen by an electron in
a real metal, we must decide what value of a to choose. Cer-
tainly the vall is not infinitely sharp, so that we cannot
a priori use a = 3/4, but it may be sufficiently sharp so that
a = 1/2 is not sufficiently accurate for present purposes. To
attempt to establish a criterion for choosing the value of a we
may consider a one-dimensional electron bound by the potential

(0] x < =L i
g V(x) ={ O L<x<0 (6.9) 5

2 x>0 E
|
On one hand we shall obtain the exact solution for the energy '

eigenvalues, on the other the approximate WKB solution. Compari- |
son of the two will allow us to choose the best value for a. |

The exact solution for the wave function for =L < x <0 and
the value of the logarithmic derivative at x = O are

¥(x) = A sin k (x + L)

T4 =k cot(kL) .

(6.10)

e -
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where k '% (2B)¥. Por x> 0, we must solve the equation

%u——* + 33 x% = B¥ (6.11)

subject to theé boundary condition that ¥(x) approaches zero as
x-»+®. Making the substitutions

0= 5 E = (n+ Mo
ot = :25 E = ax (6.12).

¥(x)= u(€) - = in(g)e.«}@?

we obtain the differential equation

o -
%.(_E"_)_gé %(_E_)+2n?in(g) =0 £6.13)

This is the differential equation of the Hermite polynomials when
n is integral, but we must here consider a more general n. We
generalize from the well-known formula for the Hermite polynomials

2 _1\h 52 ' -z2
%(E) = (-1)" e g %n E '(—l%-g’f %:E)Tﬁ dz ,

,—

(6.14)

where the contour circles the point 2z =Eonce countercloskwise. We
find that for arbitrary n the function

- EZ -22
&n(é) = é’—":i W dz (6.15)
C

satisfies (6.13) provided the integrand has the same value at
the beginning and end of the contouy. This condition and the
boundary condition u“(E) = &(E)e'* 2---'>0 as&—" + o are sat-
isfied if we cut the z-plane along the real axis from gz = i=, to

v i — e e o
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4o, start the contour at *m on the upper side of the cut, loop

z.=% once counterclockwise, and returs_to 4o below the cut.

It 18 now easy to evaluate -ﬁh(o)-nncl-- 5(E) by substituting

t = 32‘. The contour D in the. .t-plane. . =0 correspcnding to

C makes use of two Riemann surfaces in looping the origin twice

but. it..may be.deformed into two loops around the origin, each

stretching out to +o on the real axis. We may now replace this

contour by-C', which has the. form.C had in the z-plane, and we

now..use..a single Riemann.-surface cut.-from.the origin to +®

along the real axis . but traverse.C' twice, the phase.of the . .

integrand-on- the second circuit being ajvanced over that of the.

first-circuit-by the.ditterence-.in.'phaaé of the integrand on the

two..sides-of.the _cut.. The value cZ. the resulting contour integral

1s.now obtained immedistely from Hankel's integral for the gamma-

function.28 N
e~™Mngo, =

I
B(o) = v aa)

ST (6.16)
- - 1n
(4 + n/2)

We may therefore obtain the logarithmic derivative of the wave
function at the origin

B (o) g o MCEE
FP gy €@Vt P )
n 9 : h r'('g + 2)

Equating this to (6.10), we obtain the equation for E whose roots
yleld the eigenvalues:

nX\ 1/4 _Pi%_*_ll
k cot kL = 2(R%) tan 133 T (6.18)
4 rg +32

For the WKB solution we use the phase integral condition

oA ~ ﬂ\'b 4 ? ~. \/ 2\
\o V2 J

~\_at _ wvr r /v 1 -
TRWATM = L\ D v ‘L Lcm\o~= §I¥A
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where s is a positive integer and we ccreider E to be some rcot of

(6.19) exact. Integrating (6. 19) and using (6.12), we find
(s+a) n= kL ¢ (2n+1) m " (6.20)
We now use (6 20) and (6. 12) to find that

cot kL = cot {(s*fa) LU %} = cot {t‘ra - ﬁf}.(&él)

Substituting this in (6.18), we obtain

. B, 3 ~ _
co,t{ﬂﬂ- - %} = (%i':ig—;—i;— cot{3§ g{;} .(6.22)

¥We now assume that L 1s large enough so that the spacing of the
eigenvalues of the system is small compared to hw 4, so that we may
regard E in (6.20), which really denotes an eigenvalue, as a variable
with .a continuous range. We then solve (6.21) for a as a function of
EMw. Values at representative points are given in Table III.

Zable 111

B/fw a
— 00 —>3/4
6 «750
2 «753
1 .743
1/2 .750
1/10 .838
1/100 938
-0 -1

We see tnat provided E/Aw>1/2, a is remarkably close to 3/4.
We may therefore expect for the WKB solution to the problem of the
eiectron in a box in a magnetic field that a will be close to 1/2
provided E/hw >1/2, since in this instance the potential is slowly
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varying at. the. other turning point in contrast to the above model.
Approximating the wall potential in.an actual metal as in (6.1) by
+ X(r - B)z, and defining X in terms of the wall thickness (r1 - R)
and the Fermi energy & by 4 X(r; - B)% =§, we find

2. 0% ént (6.23)
Usingf;rulo'l?‘. erg. (ri - R)~10'8cm, and. the free elactron mass,
we -find é‘;ml/lo. Comparing this with Table III we see that this
puts us in the critical region with an intermediate value of a,
especially since most occupied states have energies below é‘. How-
ever, we sve from this that £ m has. to be quite small before we get
into the *sharp wall region"™ where a = 3/4 in the magnetic problem,
and we see from Table II that in the intermediate region the dominant
surface correction '1 is diamagnetic (and Dingle?s'weak field
susceptibility is paramagnetic), although not so large as we found
previously using ¢ = 1/2. This suggests that provided the periodic
potential doesn't alter the situation too drastically in a real
metal, the surface correction M, is diamagnetic. However, skepticism
of the accuracy of all these susceptibility calculations seems
Justified.

Finally, we may remark that the theorem proved by Osborne
(Section V) requires slight modification when (n+3) is replaced by
(n+a) in the calculation of the energy eigenvalues by the WKB method.
As may be seen from Osborne's proof, the volume in quantum-number
space that i1s invariant is now bounded by the plane n = -a instead
of n = -}. Fortunately, this 1s the natural generaljzation, since
the modified Poisson sum (6.8) leads us to replace g f(n+a) by

f f(n+a)dn in the r = 0 term.
-a

VII.

Tne Harmonic Oscillator Model of Darwin

We have heretofore required that V(r) be constant except for a

- S
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rapid._rise at the vell. That the results can be .quite different
when the boundary is extended is shown by-the following results on
Darwin's modei. These are of no importance in the interpretation
of experimental results, as the model is rather unrealistic, but
they are given for curicsity's sake, since the problem seems to be
the only one that can be solved more or less exactly for all ranges
of field strength, as well as to show that contrary to intimations
in the literature Darwin's model does not give the same results as
the electron-in-a-box model when Fermi statistics are used. Hence
1t should be used with care if used at all as a guide to thought.

Following Darwin,lo we consider a system of electrons bound

by the potential of the two-dimensional harmonic oscillator:
A4 ='% mwz(x2+12). We first use an approximate rrocedure for strong
fields to show some interesting features. We choose w such that
fiw <<BH for H > H . Then we may show that with neglect of the

spin the energies of individual states are to a sufficlently accurate

approximation for H g Bo

2.2 ‘ﬁzka 0<£n<w,

= (2n+1)PH + m' H ' -n<m<o, (7.1)

en,m',k :
where n,mgkz and spin orientation form a complete set of quantum
numbers.

)8 ¢ now we cohsider a "two-dimensional"® system of electrons
with a common value of kz, it proves quite easy to sum the moments
of the lowest N states to get the total moment of the system at
absolute zero. This is sketched in Fig. III as a function of the
parameter Y2 related to H by

!!175' 2, (7.2)
2B
This is qualitatively different from the results for the electrons in
a box in that the system never becomes paramagnetic and the ampli-

a3 - R P e P VW dmmmena .2
tude of oscillation decreasss as il decreases. ‘.‘wrccvcr, Loy == <4 l,

the local average of the moment is




LU ISPy — — A G S A P 0= g0 At o SR ~erm PEGSEST— |

e e
o
.

MT |k
fl%
L1 1
12 6 2
Fé—
> -NB
-NB|-

FIG.I MAGNETIC MOMENT OF A TWO-DIMENSIONAL
SYSTEM OF ELECTRONS IN OSCILLATOR |
POTENTIAL AT T=0°K. SPIN IS NOT IN- o
CLUDED. (SEE EQUATION (7.2) OF TEXT FOR ‘
DEFINITION OF &2
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_ y a2y
X = :BLSL.LB (7.3)

where n(g) represents the density of states at the Fermi level. 1In
the box problem the average moment is zero for the two-dimensional
model. We can add the average moments (7.3) for systems of electrons
with different values of k, and get the result in the same form, with
n(%) the total density of states at the Permi level of a three-
dimensional system. This is now formally exactly the same as one of
the forms of Landau's result{ for free electrons in three dimensions
given in (2.6). Of course, n(§) is different in the two problems and
in particular depends on w here. The harmonic oscillator model also
leads to low temperature oscillationc in the susceptibility per
electron of the complete system, as plotted for absolute zero in

e Ly

Fig. IV. Again the curve differs from that for the system of electrons-

in a box,ll 112 4p having the oscillations smooth and much smaller in
magnitude than the Landau average value. In Fig. V the susceptibility
is plotted when the contribution of the spin to the moment is in-
cluded.

The curves of Figs. IV and V were plotted from numerical calcu-
lations at absolute zero. We now turn to a new derivation for finite
temperatures and arbitrary field strengths, which will be a slight
modification of the method recently introduced by Sondheimer and
Wilson (5-W).2

Following S-W, we seek first to evaluate the classical partition
function Z(y), where vy = 1/kT:

—E
Z(v) =Ze 1 (7.4)

i

The Schrodinger equation for the Darwin model is (3.1) with E
replaced by (E - ﬁmtoz(x2+y2)). We let our system have length L
in the direction parallel to the field. The energy eigenvalues are

[a] 2]

"k
En,e,k, =-(20 +1s|+1) (822 m%2)E + spH + —E- | (7.5)
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0 1 2’0000 ’ ks o +1 +2’ ee oo °

The approximate values (7.1) may be obtained from (7 5) when
fw << BH,

We assume L large enough so that we may replace the sum over
kz by an integral. Then

| o k2
Z’ o-Y[2n+| 5| +1) T +spH] L_ o T om dk

- (m)i S : zc 7 govlantlsl 4T HPE]

S$=-00

Z(y)

z
(7.6)

where T = (FPE2M%W)t
The sums over n and s are easily done, and the result is

2(y) = & (@3 1 . (7.7)
v 4 "yn2 sinh% @ -BH)Jsinn[-;f(‘Z'mH)i

It is an interesting verification of Dingle and Osborne's theorem
(Section V and Reference 24) that if in (7.6) we replace sums over
n and s by integrals, the integration 1limits for s being (-oo, 00),
and those for n (- % s @), then Z(y) turns out to be independent
of H. If the n lower limit n  1is anythin% other than - %, however,
Z(Y) depends on H through the factor e YT 2n°*1). The value n,= -
occurs automatically in the Poisson sum formula and is required in
Osborne's proof.

(V]

We now use directly S-W's conclusion that the free energy for

" Permi statistics is given by

P -NE = z(E)dE, (7.8)
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Z(E) = 7;}5 oM 51—1 an | (7.9) .

the path of 1ntegration being to the right of all singularities
of the integrand. As before, our results are for electrons with
a common spin orientation.

The integral (7.9) is evaluated in a straightforward manner
by the method of S-W. As in S-W, the poles of the integrand con-
tribute the oscillatory part of z(B), the integral around the
branch point at the origin the steady part. The general result
is

' (-l ag gy3/2
i S 25;;;:222;(2"n)

sinl%- W (z-(-1)%H)°)

. sin (—2ME__ - (7.10)
s (-1)%pH ¥ 7

5<§7/2 L1 s ﬁfg_ 33/2 .
F(9/2) 12 ‘h2w2 M (5/2)

where higher terms in the asymptotic expansion of the steady part
are small provided E’BH >> 1, E/fw>> 1.

00060 9

- PFor high fields, f H >> filw, we can most simply obtain the
dominant terms of (7.10) by replacing sinh $(Z-B1) in (7.7) by
%(’Z’-BH) and integrating (7.9) anew. Using this result to calcu-
late the moment, as in S-W, we find with neglect of small
temperature-devendent corrections that the dominant terms are,
in terms of n(5), the density of states at the Fermi level,

X (5)52 ) )*i 1;%-}-’ cosi” - ) (7.11)
v 2n iﬁ ﬂé sinh(-;%n) ,

which may be contrasted with the usual result:l for electrons in
a box, with the appropriate n(%)




n
= . (7.12)
S:%L s#nh(%zt) e

The principal differences are in the pnase and amplitude of . the
oscillations. Thus the amplitude in (7. 11) varies as (BH)Q
whereas that of (7.12) varies as the reciprocal of this and is-
therefore much larger than the Landau steady term for suffi-
clently low temperature.

A For fields low enough so that g <<1 but large enough so
that %92>>1 we obtain from (7.10) the dominant terms

nﬂ

- ne” e 6P Eagh -

: i cos (%;-%)cos (%)
° [))
n= n3/2sinh(z£m)

For very weak fields such that Eg% <<1, we have finally
hw

. y &
A= —n§9ﬁ= g"ﬁ n(8) B2 ED) ()t -

. s:l.n(-g.h—”f})§ - %)
=T 3 P . (7.14)
n

The last term in (7.14) arises from the oscillatory terms of (7.10)

in the 1limit as BH—+>0. We se tBat it is much larger than the

true steady susceptibility = for such weak fields and
sufficiently low temperature hut +h 5 sign and wagnitude

(7.13)

- —

t

SR s B v

e

S, o . o TR s

SR————
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depend critically on the ratio & fw.

We note from (7.10) that the ordinary Landau susceptibility
is the dominant steady term for all but exceedingly weak fields.
This contrasts with Dingle's finding that electrons in a box
show.a steady susceptibility considerably larger than the Lan-
dau value,. for weak fields comparable to those required for the
validity of (7.13).  This contrasts also with the importance of
the "surface diamagnetism™ for the box model at intermediate
fields. However, the oscillatory terms in (7.13) are quite
similar to the oscillatory terms in Dingle's weak field calcu-
lations® 1f we identify the "radius" R of our system by setting

& = dm.%82,
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Appendix A.

FProm (5.21) and (5.22) we see that we must evaluate in-
tegrals of the form

"2 M2 Wy
0, ) =/ uw(1-u)¥qu g(0)e " a0
- ‘(°)viy(ET§§§35 ae u”(1-u) ,
- 0 -

/2 "/2 (A1)

in which we have used (5.9), have written w = gxﬁ, and have from
(3.14) h(Q)= gv-e-sinOcosev. Here £(0) is cos2@siné or cos2@ sin2e.
If #(8) = cos@9, as in the 'R% term of (5.4) in (5.3), then since

%% = - 2c0320,.we see from (5.13) that the integral is exactly
integrable. 1In general we must resort to an approximate evalu-
ation asymptotic in w. The following procedure does not yield

the complete asymptotic expansion of (Al) but gives enough of it
for our present purposes,

The integral in (Al) 1s of the form approximated by SteeleZ’
with van der Corput's method of critical points.3° However, the
ultimate justification of this procedure in this problem seems to
be the method of steepest descent, since for n 2 m-1, an integral
of the form xneily'xmdx does not converge if the path of in-
tegration is ® the real axis. Since we shall have to avoid
divergences resulting from terms in (wu)-k, with k 2 x+1, in the
asymgtotic expansion of the inner integral in (Al) when the u
integration is carried out, we should justify our procedure care-
fully and to this end can most conveniently use the method of
steepest descent directly. The following discussion is tailored
to the particular ¢(0), h(0) in our problem.

We now regard 4(©) and h(Q) as analytic functions of the
complex variable ©. From the imaginary part of h(0) we find
that for wu > 0 the path of integration of the inner integral in
(A1) should be deformed into the "steepest" path Y1+ Y, sketched

-36-
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in Fig. VI. The complete asymptotic development of the inner 1

integral is then obtained by expanding #(®) and h(9) about the ;
5 ;

critical points 8, = - %, 0, = T, where R h(O)I assumes

its greatest value (unity) on the path 71*72:

(m) m
h*®/(0,)(0-0,)
S il (o, f ¢ (0,)(0-0 )k | L B
° Yy X! e ™ )
1=1,2 k=0 (A2)
) z : 1‘#2 z : (E%s).' = %T -
P=0 8= :

where h(‘“)(oi) is the first non-zero derivative of h(Oi) (for our
problem the third). Each term in the expansion is evaluated
asymptotically (such that (wu)® times the error in each term
approaches zero as (wd) —>® for all n) by replacing Yy Dby the
rectilinear path My tangent to Yy at 91 and taken in the same
sense. The general result from terms with p = 0,1 is that given
by Steele in his equations (A9) and (M.O)o8

Using the special form of h(9), #(®) in our problem (Table Iy,
the inte.-~ting terms of (A2) are those involving 6(2)(91), d("')(ei)
and 6(2)(91)& 5)(01), at both + 3.

S8ince h(3)(1 g) = -4 and +1) 1
' - nil
R 2damgg T EINPAPRYON L. S I o DL 0.1
(0 =3 e 3nm ae 2w 3 3
® (A3)
(2)

for wu > 0, (with the corresponding equation at - %), we have for

the first two terms at ig- for the inner integral in (Al) with

#(0) = cos2e sin@ and wu >0 i
oo -1 From]

(Aa)

-

1,573 o |
+ glunt % + %(-213“)1-1;)5/3 e P(5/3)) :
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For wu < 0 we obtain the development by conjugation, as with the

asymptotic formula (5.i4). A similar expansion holds for
6(0) = cos2esine,

This expansion of the inner integral, which we shall call
¥(w), in (Al) is asymptotic in wu, but since the integral over u
extends. down to u = 0 we must make certain that the result after
the u integration is.asymptotic in w. Since a term in (1/u)¥ 1n
(A4), with k2 x + 1, lecads to a divergent u integral, we see,
as remarked above, vhat we can at best obtain by this method no
more than the first few terms of the complete asymptotic develop-
ment of the double integral (Al). :

-~ -We accordingly assume an asymptotic approximation to ¥(wu) of
the form o
€ (eu) = alom) (A5)
(wu)
where k € x + 1 and |a(wu)| < ¢, a constant, for all wu, such

that for an arbitrary ©>0, there exists an A such that whenever
wu 2 A

[¥Can) - Eou)| (ou)<s, (A6)
(The proof 1is readily extended to a more general expansion of
E(w) = Sl - provided that all the k, < x + 1.) Then
1r u e 71 (ew)™d

and w> A/ . (A6) will be satisfied. More-

over for either of the g(Q) of interest to us, |¥(wu)l<m,
Accordingly,

1 €
f(*(mu)- g(wu))ux(l-u)ydu W < wkf Fwu)u(1-u)¥ du
(o]

o)

#wkl‘/l
€

U S
u“du * ¢ J u™ " "du *Sj u*™ du
o £

+wk

¥wu)- E(wu)| v (1-u)¥du

€
f g(wu)ux(l-u)ydu
o

" m
S w“"J
(o]
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k
woo x4l X-k+l
: # -
x ! ix-kﬂ ) ’(x-k#l-T . (A7)

By choosing

X4]l-) |
€ = @R where & =L(x41-) >0, (a8

we may determine A such that x_-ki;i <7M/3, where M =0 is arbitrarily
small. We may then choose w such that the first two terms in (A7),
which according tp (48) each vary as a negative power of w, are
each less than 7/3, and simultaneously
X4]l-k=A
o B - (A9)
which suffices to makew> A% . Hence for sufficiently large w

f (¥(w) - g(wu)) u*(1-u)¥du|< n

0

wE

?

so that substitution of (A4) yields the asymptotic expansion of
(A1) through terms with k < x 4 1, but we have no assurance that

higher terms are given accurately, even if they do not diverge.
Substitution of (A4) ylelds then for (A1)

SBT,® 37 ey w

Ll 24

.. - | (A10)

* #3073 oi? r(s/3) v ¢ (0)
X 3;y

25 Ve1,y(0) -

and we must use (5.14) to eliminate terms varying as (:L/m)k with
k2x +1. PFor (5.21) we see that this condition actually elimi-
nates all the oscillatory terms, so that the oscillatory term in
(5.28) may be inaccurate. We know at least that it is no larger
than the order of magnitude there given, so that Table I assures

ne that 1t 4c certainlv nasle~an_
—~—~— - ¢ “evpeaeslRiWVAC,

The dominant term in(A10) 1s the third one, but this vanishes
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Appendix B.
In order to calculate the second term of (5.25) and the
L) ¢ - e—-— - 3
correction to (P-N§);, we mu:: include the next term, chero(r r,)

of the expansion (3.9) in th. phase integral (3.10). We
then change variables to x ard y of (3.13) and set u = (ro-r)(%%) *.
Making the further substitutions

= + —3 d = x (1 + ——r—x
v u é 2(%)*100) an Vx. ( 2(%%) R > 9

we obtain for the phase integral

1
2 * v \
} - (1 -?— dv = (n + . (B1
5 (y v ) ec)iﬁ ) v (n %)" /

b ¢

where y = vi, and (Bl) is accurate through terms in 1/R. Intro-

ducing the parameter z = vx/yf, which has the range -lcz <l. we
obtain the equations replacing (3.14) by integrating:

Sonr1 B (1 - 22)3/2

_.(Ta_u_z_e +1) n : ks
= — 1+ g (B2)
7 cos ~z-z(1-z) (ﬁg)’ %os'j;-z(l-zz)f)yé

on+1) ¥ (2n+1)*‘/17 {%z(cos'lz-z(l-zz)&)- %(l-zz)i'}
x = ——‘Tﬂ-u—ﬂ‘—n - . —
(cos™tz-z{1-2z2)T) (ﬁ&)*ﬁ (cos'lz-z(1-.2"'3)*)372
(B3)

Substituting from (3.13) into the expression for (P-NB) obtained
from (5.3) and €(5.4), we have to evaluate an integral of the form

1
E [ xa) HEL (& - gy tan. (B4)
0 =1

We cannot expand each factor in a Taylor series in 1/R, since the
last factor has a branch point when E = BHy(z), and we wish to

integrate over z. Hence we change variables in (B4) from z to t,
where z(t) is defined such that with accuracy through terms in
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1/R, z(t) = t 4 q(t)/R and |
y(z(t)) =y (¢t), (BS)

where y (2z) is obtained from (B2) by dropping the 1/R term and
is the same as in (3.14). We find readily that to this accuracy
(B4) becomes

fl ¢+ Yt ) —-g—(n - BHy (t))® dat. (B6)
n=o

We obtain x(t4q(t)/R) from (B3) after determining q(t) from (B5)
and (B2), and the integral (B6) is then readily evaluated with
the methods of 8ection V and Appendix A. We find for the r = O
correction to (F-NQ)I

of
'..3.;_1' 2y __ 1 ’ 0 7/2
(=3) E dE (B?7)

which cancels the corresponding terms of (l"-l!;)2 and (P-ND+ in
(5.22) and (5.24), in agreement with Osborne's theorem. For the
correction to be added to the steady part of (F-N§)2 we obtain

3)5/3§(5/3)(1 -‘17') af
+ 3 gll/6 4 (B8)
B P 3E ,

81 Vw F(17/6)

(o)

which contributes M,,, already included in (5.29)
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Appendix C.
To prove (6.8) we use Poisson's sum in its usual form31

-Z‘ £(s) +32' £(o) = i I f(s)egﬂin’ ds. (Cl)
n=- @

s=1

We now let f(s) = g(s¥), 0 < a <1, and follow the method
used by Dingle for a = 1/2:

i g(s+a) =‘é gla) + i f’ g(s+a)e?'ins 44
$=0 n=e a

- Et f g(:rr!><7.)e2m'ns ds.
== m J-a

The general Fourier series for a function defined in (-L,L) is

@ - minx ninx'
P~ D e Lrpcx')e P, (€3)
=-® -L

in which the series converges to% p(x-0) + p(x+0)li' at a point
of ordinary discontinuity and to 3 { p(L-0) + p(-L+0 } at +L,
Hence setting L = % and defining

(c2)

I AN 1l 1
g(x + a 59 for2-a<x<2

p(x) = L (ca)
0 for-%<x<§-a,
' we find on substituting in (C3) and setting x =%
%g(a) = _;f (-1)2 f g(s+a- -21')02"1“ ds
n=- o -a
(C5)
®

j g(s+a)ed™NS 4o, ;
-a

=._.m

L e o ———
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Hence the first and third terms on the right of (C2) cancel, and
we have left

11.
12,
13.
14.

15.
16.

® ®
E g(s+a) = E e-2nina‘]p g(s) e2™ns 4o (c6)
s=o n=- o

* & 8 % % %
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17. Since V(r) has an infinite step at r = R, we should impcse on
f(r) the boundary condition f/R; = 0. This leads in (2.5)
to (n + 3/4) in place of (n + 1/2) when the upper limit of
integration 1s R, although 1t 1s not clear at what point as
r, approaches R we should start to vary from 1/2 to 3/4. This
replacement does not alter the results of Section IV or the
derivation of Mo in Section V but dces change the correction
terms. This matter is discussed at length in Section VI, but
until that section we shall use (n+ 1/2). Prope~ use o .
(n + 3/4) would cause the curves of Fig. I to rise at a 1
|
|

slightly lower value of x and remain slightly above the
curves plotted. It would undoubtedly smooth out the lo
end of the moment curves in Fig. II. :

18. Peirce . A Short Table of Integrals, New York, 1910, No. 187,

19. The effect of spin should be determined by Dingle's procedure
(see reference 3, I). This adds to the steady moment the
usual spin paramagnetism and changes the phase of the
oscillatory terms.

20, The tail is clearly defined only if we use approximate
methods, such as the WKB procedure, to determine the energy
eigenvaiues. In an exact solution all eigenvalues would
deperd on ro, but the departure from the free electron eigen=-
values would “e appreciable only for states with ro = R.

21. When we obtain ¥ from (5.3) we should have no terms involving
[35(n,H,E)]/3H or 3ar, /3K and in fact do.not, for although
both 8(n,H,E) and Argy depend on H, (E-e)?¥ vanishes at r_ =8
and 3e/3ro vanishes at ro=R - Aron, s¢ that the integrand 1s l
zero at each 1imit of integration.

22. E. T. "hittaker and G. N. Watson, A Course of Modern Analysis, ‘
4th ed. Cambridge, 1952, p. 337. |

|
|
1
\
1
1
23. Whittaker & Watson, op. cit. Mx.m(z) 1is incorrectly given

in terms of Wy m(z3 and W-x m(=2) in Ex. 2 of §16.41, p. 346,

The expression’should be cofrected by replaci ekﬂi by e-kni

in each term. The asymptotic expansion of qum(z) is given on ; 1

. p. 343,

24. This theorem, one form of which was previcusly suggested by
Dingle (Ref. 3, III), has proved to be true to the accuracy
used in every problem in which it has been tested, including
our exact solution of the Darwin problem (Section VII). Ko
one has as yet given a general proofg Osborne's proof 1s
valid for fairly general potentials but requires the use of
the WKB approximation, which is known to he accurate only
asymptotically as either (n</m)—e 0, Or as the quantum
number n becomes large (J. L. Dunham, Phys. Rev. 41, 713 (19%2))°
Since this is in this sense a semiclassical approximzation, 1
is not impossible that its use obscures a purely quantum effect
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5.

2t.

29,

28,
29.

30.

31,

not shown by Darwin's model.

The magnitude of the My correction was incorrectly given in
the abstract of an eariier report on this work. Moreover,
at the time of that report the work of Section VI had not

been done. (Bull. Amer. Phys. Soc. 28, no. 1 WAS8,)

Several of our small oscillatory terms correspond to terms

found by Osborne. Thus the second term in his Mj g o 1is

of -the same form es the osciliatory part of our ii,’and his
My 1.0 1s l1ke the oscillatory part of M+, or My and arises
f%bm’%he energy surface near stetes with positive s.

L. I. Schiff, Quantum Mechani McGraw-Hiil, New York
1949, p. 186. ’ ’ ’

Whittaker and Watison, gp. ¢it., p. 244,

See Reference 8, Appendix. Steele's integrals are very simi-
lar tc ours. Thus his Ijj is apart from a constant the
imaginary part of our V -+ (w/2). His I;o is proportional
to Im VI’-*(O)/2), and h?g I21"122 to

w
Im 1 dz vts-§(2g(25)

Proceedings of the Sectiop of Sciences, Nederlandsche Akademie
an Wetenschappen 51, 650 (1948).

Reference 3, I (Appendix). The conditions for the validity
of the formula and the sense in which the convergence of
the series is to be understood are obtained from Titchmarsh,

{ntroductio to the Theory of Fourier Integrals, Oxford,
932, p. 60.
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